Step
*
1
of Lemma
sum-of-three-cubes-iff-4
1. k : ℕ
2. a : ℤ
3. b : ℤ
4. c1 : ℤ
5. ((a * a * a) + (b * b * b) + (c1 * c1 * c1)) = k ∈ ℤ
6. d : ℕ
7. e : ℤ
8. c : ℤ
9. ((d * e) - k) = (c * c * c) ∈ ℤ
10. n : ℕ
11. ((4 * e) - d * d) = (3 * n * n) ∈ ℤ
⊢ ∃d,n:ℕ
((((d * d) + (3 * n * n) rem 4) = 0 ∈ ℤ) ∧ (∃c:ℤ. (((d * (((d * d) + (3 * n * n)) ÷ 4)) - k) = (c * c * c) ∈ ℤ)))
BY
{ (InstConcl [⌜d⌝;⌜n⌝]⋅ THENA Auto) }
1
1. k : ℕ
2. a : ℤ
3. b : ℤ
4. c1 : ℤ
5. ((a * a * a) + (b * b * b) + (c1 * c1 * c1)) = k ∈ ℤ
6. d : ℕ
7. e : ℤ
8. c : ℤ
9. ((d * e) - k) = (c * c * c) ∈ ℤ
10. n : ℕ
11. ((4 * e) - d * d) = (3 * n * n) ∈ ℤ
⊢ (((d * d) + (3 * n * n) rem 4) = 0 ∈ ℤ) ∧ (∃c:ℤ. (((d * (((d * d) + (3 * n * n)) ÷ 4)) - k) = (c * c * c) ∈ ℤ))
Latex:
Latex:
1. k : \mBbbN{}
2. a : \mBbbZ{}
3. b : \mBbbZ{}
4. c1 : \mBbbZ{}
5. ((a * a * a) + (b * b * b) + (c1 * c1 * c1)) = k
6. d : \mBbbN{}
7. e : \mBbbZ{}
8. c : \mBbbZ{}
9. ((d * e) - k) = (c * c * c)
10. n : \mBbbN{}
11. ((4 * e) - d * d) = (3 * n * n)
\mvdash{} \mexists{}d,n:\mBbbN{}
((((d * d) + (3 * n * n) rem 4) = 0)
\mwedge{} (\mexists{}c:\mBbbZ{}. (((d * (((d * d) + (3 * n * n)) \mdiv{} 4)) - k) = (c * c * c))))
By
Latex:
(InstConcl [\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
Home
Index