Nuprl Lemma : zero_divs_only_zero

[a:ℤ]. 0 ∈ ℤ supposing a


Proof




Definitions occuring in Statement :  divides: a uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: divides: a exists: x:A. B[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q
Lemmas referenced :  divides_wf decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry intEquality productElimination dependent_functionElimination because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality voidElimination voidEquality independent_pairFormation

Latex:
\mforall{}[a:\mBbbZ{}].  a  =  0  supposing  0  |  a



Date html generated: 2019_06_20-PM-02_19_55
Last ObjectModification: 2018_09_26-PM-05_45_05

Theory : num_thy_1


Home Index