Nuprl Lemma : eq_int-wf-partial2
∀[x,y:partial(ℤ)].  ((x =z y) ∈ partial(𝔹))
Proof
Definitions occuring in Statement : 
partial: partial(T), 
eq_int: (i =z j), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a
Lemmas referenced : 
eq_int-wf-partial, 
subtype_rel_partial, 
base_wf, 
int_subtype_base, 
partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
intEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[x,y:partial(\mBbbZ{})].    ((x  =\msubz{}  y)  \mmember{}  partial(\mBbbB{}))
 Date html generated: 
2016_05_14-AM-06_10_32
 Last ObjectModification: 
2015_12_26-AM-11_51_49
Theory : partial_1
Home
Index