Nuprl Lemma : eq_int-wf-partial
∀[x,y:partial(Base)].  ((x =z y) ∈ partial(𝔹))
Proof
Definitions occuring in Statement : 
partial: partial(T), 
eq_int: (i =z j), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bool: 𝔹, 
subtype_rel: A ⊆r B, 
eq_int: (i =z j), 
prop: ℙ, 
not: ¬A, 
implies: P ⇒ Q, 
has-value: (a)↓, 
and: P ∧ Q, 
false: False, 
squash: ↓T, 
all: ∀x:A. B[x], 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
base-member-partial, 
bool_wf, 
union-value-type, 
unit_wf2, 
partial-base, 
is-exception_wf, 
partial_wf, 
base_wf, 
btrue_wf, 
bfalse_wf, 
exception-not-value, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
has-value_wf_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
partial-not-exception
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
isect_memberEquality, 
callbyvalueIntEq, 
productElimination, 
int_eqEquality, 
int_eqExceptionCases, 
imageElimination, 
imageMemberEquality, 
voidElimination, 
unionElimination, 
equalityElimination, 
int_eqReduceTrueSq, 
divergentSqle, 
sqleReflexivity, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
int_eqReduceFalseSq
Latex:
\mforall{}[x,y:partial(Base)].    ((x  =\msubz{}  y)  \mmember{}  partial(\mBbbB{}))
Date html generated:
2017_04_14-AM-07_40_43
Last ObjectModification:
2017_02_27-PM-03_12_48
Theory : partial_1
Home
Index