Nuprl Lemma : no-halt-decider
¬(∃h:partial(ℤ) ⟶ 𝔹. (h 0 = tt ∧ h ⊥ = ff))
Proof
Definitions occuring in Statement : 
partial: partial(T), 
bottom: ⊥, 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
exists: ∃x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
sq_type: SQType(T), 
guard: {T}, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
bottom_diverge, 
base-member-partial, 
int-value-type, 
has-value_wf_base, 
not-is-exception-bottom, 
fixpoint-induction-bottom, 
partial_wf, 
int-mono, 
ifthenelse_wf, 
exists_wf, 
bool_wf, 
equal-wf-T-base, 
inclusion-partial, 
subtype_base_sq, 
bool_subtype_base, 
btrue_neq_bfalse, 
equal_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
baseClosed, 
isect_memberFormation, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
productElimination, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
functionEquality, 
productEquality, 
unionElimination, 
equalityElimination, 
addLevel, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
levelHypothesis
Latex:
\mneg{}(\mexists{}h:partial(\mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  (h  0  =  tt  \mwedge{}  h  \mbot{}  =  ff))
Date html generated:
2017_04_14-AM-07_40_55
Last ObjectModification:
2017_02_27-PM-03_12_40
Theory : partial_1
Home
Index