Nuprl Lemma : partial-strong-subtype-base

[T:Type]. ((T ⊆Base)  strong-subtype(partial(T);Base))


Proof




Definitions occuring in Statement :  partial: partial(T) strong-subtype: strong-subtype(A;B) subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q strong-subtype: strong-subtype(A;B) cand: c∧ B all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: uimplies: supposing a sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_rel_wf base_wf strong-subtype_witness partial_wf subtype_partial_sqtype_base exists_wf equal-wf-base-T subtype_base_sq subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination independent_functionElimination because_Cache universeEquality setEquality applyEquality setElimination rename productElimination instantiate independent_isectElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  strong-subtype(partial(T);Base))



Date html generated: 2018_05_21-PM-00_05_13
Last ObjectModification: 2017_10_30-AM-00_43_35

Theory : partial_1


Home Index