Nuprl Lemma : partial-strong-subtype-base
∀[T:Type]. ((T ⊆r Base) 
⇒ strong-subtype(partial(T);Base))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
strong-subtype: strong-subtype(A;B)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
subtype_rel_wf, 
base_wf, 
strong-subtype_witness, 
partial_wf, 
subtype_partial_sqtype_base, 
exists_wf, 
equal-wf-base-T, 
subtype_base_sq, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
universeEquality, 
setEquality, 
applyEquality, 
setElimination, 
rename, 
productElimination, 
instantiate, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  strong-subtype(partial(T);Base))
Date html generated:
2018_05_21-PM-00_05_13
Last ObjectModification:
2017_10_30-AM-00_43_35
Theory : partial_1
Home
Index