Nuprl Lemma : per-partial-subtype
∀A,B:Type. ∀a,b:Base.  ((A ⊆r B) ⇒ per-partial(A;a;b) ⇒ per-partial(B;a;b))
Proof
Definitions occuring in Statement : 
per-partial: per-partial(T;x;y), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
base: Base, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
per-partial: per-partial(T;x;y), 
and: P ∧ Q, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
uimplies: b supposing a, 
member: t ∈ T, 
has-value: (a)↓, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
guard: {T}
Lemmas referenced : 
has-value_wf_base, 
equal_functionality_wrt_subtype_rel2, 
per-partial_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
axiomSqleEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}A,B:Type.  \mforall{}a,b:Base.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  per-partial(A;a;b)  {}\mRightarrow{}  per-partial(B;a;b))
Date html generated:
2016_05_14-AM-06_09_23
Last ObjectModification:
2015_12_26-AM-11_52_26
Theory : partial_1
Home
Index