Nuprl Lemma : decidable__quotient_equal
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].
  (EquivRel(T;x,y.E[x;y]) 
⇒ (∀x,y:T.  Dec(E[x;y])) 
⇒ (∀u,v:x,y:T//E[x;y].  Dec(u = v ∈ (x,y:T//E[x;y]))))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
infix_ap: x f y
, 
trans: Trans(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
guard: {T}
, 
sym: Sym(T;x,y.E[x; y])
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
istype-universe, 
decidable_wf, 
equiv_rel_wf, 
dec_iff_ex_bvfun, 
quotient_wf, 
equal_wf, 
bool_wf, 
subtype_rel_self, 
iff_imp_equal_bool, 
assert_wf, 
assert_witness, 
sq_stable__iff, 
sq_stable_from_decidable, 
decidable__assert, 
sq_stable__equal, 
squash_wf, 
iff_wf, 
infix_ap_wf, 
quot_elim, 
subtype_quotient
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalRule, 
Error :functionIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :universeIsType, 
applyEquality, 
Error :lambdaEquality_alt, 
universeEquality, 
cumulativity, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
Error :functionExtensionality_alt, 
pointwiseFunctionalityForEquality, 
functionEquality, 
pertypeElimination, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
instantiate, 
Error :equalityIsType1, 
dependent_functionElimination, 
Error :productIsType, 
Error :equalityIsType4, 
independent_pairFormation, 
promote_hyp, 
Error :dependent_pairFormation_alt, 
independent_pairEquality, 
axiomEquality, 
Error :functionIsTypeImplies, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T;x,y.E[x;y])  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(E[x;y]))  {}\mRightarrow{}  (\mforall{}u,v:x,y:T//E[x;y].    Dec(u  =  v)))
Date html generated:
2019_06_20-PM-00_32_18
Last ObjectModification:
2018_10_05-PM-05_44_32
Theory : quot_1
Home
Index