Nuprl Lemma : decidable__quotient_equal

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].
  (EquivRel(T;x,y.E[x;y])  (∀x,y:T.  Dec(E[x;y]))  (∀u,v:x,y:T//E[x;y].  Dec(u v ∈ (x,y:T//E[x;y]))))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_apply: x[s1;s2] prop: so_lambda: λ2y.t[x; y] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] quotient: x,y:A//B[x; y] subtype_rel: A ⊆B infix_ap: y trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) guard: {T} sym: Sym(T;x,y.E[x; y]) sq_stable: SqStable(P) squash: T
Lemmas referenced :  istype-universe decidable_wf equiv_rel_wf dec_iff_ex_bvfun quotient_wf equal_wf bool_wf subtype_rel_self iff_imp_equal_bool assert_wf assert_witness sq_stable__iff sq_stable_from_decidable decidable__assert sq_stable__equal squash_wf iff_wf infix_ap_wf quot_elim subtype_quotient
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalRule Error :functionIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  Error :universeIsType,  applyEquality Error :lambdaEquality_alt,  universeEquality cumulativity functionExtensionality because_Cache independent_isectElimination productElimination independent_functionElimination Error :functionExtensionality_alt,  pointwiseFunctionalityForEquality functionEquality pertypeElimination equalityTransitivity equalitySymmetry rename instantiate Error :equalityIsType1,  dependent_functionElimination Error :productIsType,  Error :equalityIsType4,  independent_pairFormation promote_hyp Error :dependent_pairFormation_alt,  independent_pairEquality axiomEquality Error :functionIsTypeImplies,  imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T;x,y.E[x;y])  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(E[x;y]))  {}\mRightarrow{}  (\mforall{}u,v:x,y:T//E[x;y].    Dec(u  =  v)))



Date html generated: 2019_06_20-PM-00_32_18
Last ObjectModification: 2018_10_05-PM-05_44_32

Theory : quot_1


Home Index