Step
*
2
1
of Lemma
rel_inverse_exp
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. n : ℤ
4. [%1] : 0 < n
5. ∀x,y:T. (x R^n - 1^-1 y
⇐⇒ x R^-1^n - 1 y)
6. x : T
7. y : T
8. y R^n x
⊢ x R^-1^n y
BY
{ (((((RecUnfold `rel_exp` (-1) THEN MoveToConcl (-1)) THEN SplitOnConclITE) THEN Reduce 0) THEN Auto') THEN ExRepD) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. n : ℤ
4. [%1] : 0 < n
5. ∀x,y:T. (x R^n - 1^-1 y
⇐⇒ x R^-1^n - 1 y)
6. x : T
7. y : T
8. ¬(n = 0 ∈ ℤ)
9. z : T
10. y R z
11. z R^n - 1 x
⊢ x R^-1^n y
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. n : \mBbbZ{}
4. [\%1] : 0 < n
5. \mforall{}x,y:T. (x rel\_exp(T; R; n - 1)\^{}-1 y \mLeftarrow{}{}\mRightarrow{} x rel\_exp(T; R\^{}-1; n - 1) y)
6. x : T
7. y : T
8. y rel\_exp(T; R; n) x
\mvdash{} x rel\_exp(T; R\^{}-1; n) y
By
Latex:
(((((RecUnfold `rel\_exp` (-1) THEN MoveToConcl (-1)) THEN SplitOnConclITE) THEN Reduce 0)
THEN Auto'
)
THEN ExRepD
)
Home
Index