Nuprl Lemma : bunion-value-type
∀[A,B:Type].  (value-type(A ⋃ B)) supposing (value-type(B) and value-type(A))
Proof
Definitions occuring in Statement : 
value-type: value-type(T), 
b-union: A ⋃ B, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
b-union: A ⋃ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
value-type: value-type(T), 
has-value: (a)↓
Lemmas referenced : 
tunion-value-type, 
bool_wf, 
ifthenelse_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-base, 
b-union_wf, 
base_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
instantiate, 
hypothesisEquality, 
universeEquality, 
cumulativity, 
independent_isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality, 
axiomSqleEquality
Latex:
\mforall{}[A,B:Type].    (value-type(A  \mcup{}  B))  supposing  (value-type(B)  and  value-type(A))
Date html generated:
2017_04_14-AM-07_36_40
Last ObjectModification:
2017_02_27-PM-03_08_58
Theory : subtype_1
Home
Index