Nuprl Lemma : id-fun-subtype

[A,B:Type].  id-fun(B) ⊆id-fun(A) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) id-fun: id-fun(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q guard: {T} strong-subtype: strong-subtype(A;B) cand: c∧ B id-fun: id-fun(T) prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x]
Lemmas referenced :  strong-subtype-implies id-fun_wf strong-subtype_wf equal_wf set_wf subtype_rel_sets exists_wf subtype_rel_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis promote_hyp productElimination cumulativity sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality functionExtensionality dependent_set_memberEquality applyEquality lambdaFormation dependent_functionElimination independent_isectElimination setElimination rename setEquality dependent_pairFormation

Latex:
\mforall{}[A,B:Type].    id-fun(B)  \msubseteq{}r  id-fun(A)  supposing  strong-subtype(A;B)



Date html generated: 2017_04_14-AM-07_37_00
Last ObjectModification: 2017_02_27-PM-03_09_46

Theory : subtype_1


Home Index