Nuprl Lemma : id-fun-subtype
∀[A,B:Type].  id-fun(B) ⊆r id-fun(A) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
id-fun: id-fun(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
id-fun: id-fun(T)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
strong-subtype-implies, 
id-fun_wf, 
strong-subtype_wf, 
equal_wf, 
set_wf, 
subtype_rel_sets, 
exists_wf, 
subtype_rel_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
promote_hyp, 
productElimination, 
cumulativity, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
applyEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
dependent_pairFormation
Latex:
\mforall{}[A,B:Type].    id-fun(B)  \msubseteq{}r  id-fun(A)  supposing  strong-subtype(A;B)
Date html generated:
2017_04_14-AM-07_37_00
Last ObjectModification:
2017_02_27-PM-03_09_46
Theory : subtype_1
Home
Index