Nuprl Lemma : per-class-base
∀[T:Type]. ∀[a:T]. ∀[b:per-class(T;a)].  (b ~ a) supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
per-class: per-class(T;a)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
per-class: per-class(T;a)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_base_sq, 
subtype_rel_self, 
equal_functionality_wrt_subtype_rel2, 
base_wf, 
per-class_wf, 
subtype_rel_b-union-left, 
subtype_rel_transitivity, 
b-union_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
instantiate, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalAxiom, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[b:per-class(T;a)].    (b  \msim{}  a)  supposing  T  \msubseteq{}r  Base
Date html generated:
2016_05_13-PM-04_12_42
Last ObjectModification:
2015_12_26-AM-11_11_51
Theory : subtype_1
Home
Index