Nuprl Lemma : per-class-base

[T:Type]. ∀[a:T]. ∀[b:per-class(T;a)].  (b a) supposing T ⊆Base


Proof




Definitions occuring in Statement :  per-class: per-class(T;a) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] base: Base universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a per-class: per-class(T;a) guard: {T} implies:  Q sq_type: SQType(T) all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  subtype_base_sq subtype_rel_self equal_functionality_wrt_subtype_rel2 base_wf per-class_wf subtype_rel_b-union-left subtype_rel_transitivity b-union_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename instantiate lemma_by_obid isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_functionElimination sqequalAxiom applyEquality sqequalRule isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[b:per-class(T;a)].    (b  \msim{}  a)  supposing  T  \msubseteq{}r  Base



Date html generated: 2016_05_13-PM-04_12_42
Last ObjectModification: 2015_12_26-AM-11_11_51

Theory : subtype_1


Home Index