Nuprl Lemma : strong-continuous-b-union
∀[F,G:Type ⟶ Type].
  (Continuous+(T.F[T] ⋃ G[T])) supposing ((∀T,S:Type.  (¬F[T] ⋂ G[S])) and Continuous+(T.G[T]) and Continuous+(T.F[T]))
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T]), 
isect2: T1 ⋂ T2, 
b-union: A ⋃ B, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
not: ¬A, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
btrue: tt, 
bfalse: ff, 
isect2: T1 ⋂ T2, 
it: ⋅, 
guard: {T}, 
all: ∀x:A. B[x]
Lemmas referenced : 
bfalse_wf, 
btrue_wf, 
isect2_subtype_rel, 
b-union-void, 
isect2_subtype_rel2, 
isect2-b-union-subtype, 
strong-subtype-implies, 
strong-subtype-b-union, 
bool_wf, 
subtype_rel_b-union, 
ifthenelse_wf, 
le_wf, 
false_wf, 
strong-type-continuous_wf, 
isect2_wf, 
not_wf, 
all_wf, 
b-union_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
isectEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaFormation, 
imageElimination, 
unionElimination, 
equalityElimination, 
imageMemberEquality, 
dependent_pairEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
rename, 
voidElimination, 
baseClosed
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (Continuous+(T.F[T]  \mcup{}  G[T]))  supposing 
          ((\mforall{}T,S:Type.    (\mneg{}F[T]  \mcap{}  G[S]))  and 
          Continuous+(T.G[T])  and 
          Continuous+(T.F[T]))
Date html generated:
2016_05_13-PM-04_12_14
Last ObjectModification:
2016_01_14-PM-07_30_01
Theory : subtype_1
Home
Index