Nuprl Lemma : strong-continuous-union
∀[F,G:Type ⟶ Type].  (Continuous+(T.F[T] + G[T])) supposing (Continuous+(T.G[T]) and Continuous+(T.F[T]))
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
isl: isl(x), 
outl: outl(x), 
outr: outr(x), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_wf, 
strong-type-continuous_wf, 
subtype_rel_union, 
false_wf, 
le_wf, 
equal_wf, 
bool_wf, 
eqtt_to_assert, 
btrue_wf, 
bfalse_wf, 
outl_wf, 
assert_wf, 
isl_wf, 
member_wf, 
btrue_neq_bfalse, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
isectEquality, 
extract_by_obid, 
hypothesis, 
unionEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
universeEquality, 
isect_memberEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
cumulativity, 
isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
equalityElimination, 
inlEquality, 
inrEquality, 
hyp_replacement, 
applyLambdaEquality, 
voidElimination, 
baseClosed
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (Continuous+(T.F[T]  +  G[T]))  supposing  (Continuous+(T.G[T])  and  Continuous+(T.F[T]))
Date html generated:
2017_04_14-AM-07_36_32
Last ObjectModification:
2017_02_27-PM-03_09_13
Theory : subtype_1
Home
Index