Nuprl Lemma : strong-subtype-eq1

[A,B:Type]. ∀[b:B]. ∀[a:A].  ((b ∈ A) c∧ (b a ∈ A)) supposing ((b a ∈ B) and strong-subtype(A;B))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cand: c∧ B implies:  Q guard: {T} strong-subtype: strong-subtype(A;B) exists: x:A. B[x] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t all: x:A. B[x]
Lemmas referenced :  strong-subtype-implies equal_wf exists_wf strong-subtype_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_functionElimination hypothesis productElimination dependent_pairFormation hypothesisEquality applyEquality sqequalRule dependent_set_memberEquality lambdaEquality equalityTransitivity equalitySymmetry independent_pairFormation independent_pairEquality axiomEquality isect_memberEquality universeEquality dependent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[b:B].  \mforall{}[a:A].    ((b  \mmember{}  A)  c\mwedge{}  (b  =  a))  supposing  ((b  =  a)  and  strong-subtype(A;B))



Date html generated: 2016_05_13-PM-04_11_31
Last ObjectModification: 2015_12_26-AM-11_21_22

Theory : subtype_1


Home Index