Nuprl Lemma : strong-subtype-eq2
∀[A,B:Type]. ∀[b:B]. ∀[a:A].  (b = a ∈ A) supposing ((b = a ∈ B) and strong-subtype(A;B))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
Lemmas referenced : 
strong-subtype-eq1, 
equal_wf, 
strong-subtype_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
cumulativity, 
applyEquality, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[b:B].  \mforall{}[a:A].    (b  =  a)  supposing  ((b  =  a)  and  strong-subtype(A;B))
Date html generated:
2017_04_14-AM-07_36_48
Last ObjectModification:
2017_02_27-PM-03_09_00
Theory : subtype_1
Home
Index