Nuprl Lemma : strong-subtype-eq2

[A,B:Type]. ∀[b:B]. ∀[a:A].  (b a ∈ A) supposing ((b a ∈ B) and strong-subtype(A;B))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B
Lemmas referenced :  strong-subtype-eq1 equal_wf strong-subtype_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination cumulativity applyEquality productElimination sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[b:B].  \mforall{}[a:A].    (b  =  a)  supposing  ((b  =  a)  and  strong-subtype(A;B))



Date html generated: 2017_04_14-AM-07_36_48
Last ObjectModification: 2017_02_27-PM-03_09_00

Theory : subtype_1


Home Index