Nuprl Lemma : bag-decomp_wf2
∀[T:Type]. ∀[bs:bag(T)].  (bag-decomp(bs) ∈ bag({p:T × bag(T)| bs = ({fst(p)} + (snd(p))) ∈ bag(T)} ))
Proof
Definitions occuring in Statement : 
bag-decomp: bag-decomp(bs), 
bag-append: as + bs, 
single-bag: {x}, 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
member: t ∈ T, 
set: {x:A| B[x]} , 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
so_apply: x[s], 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
pi1: fst(t), 
pi2: snd(t), 
squash: ↓T, 
true: True
Lemmas referenced : 
true_wf, 
squash_wf, 
and_wf, 
bag-member-decomp, 
bag-member_wf, 
pi2_wf, 
pi1_wf, 
single-bag_wf, 
bag-append_wf, 
equal_wf, 
bag-decomp_wf, 
bag_wf, 
bag-settype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_isectElimination, 
lambdaFormation, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    (bag-decomp(bs)  \mmember{}  bag(\{p:T  \mtimes{}  bag(T)|  bs  =  (\{fst(p)\}  +  (snd(p)))\}  ))
Date html generated:
2016_05_15-PM-02_55_05
Last ObjectModification:
2016_01_16-AM-08_39_58
Theory : bags
Home
Index