Nuprl Lemma : bag-decomp_wf
∀[T:Type]. ∀[bs:bag(T)].  (bag-decomp(bs) ∈ bag(T × bag(T)))
Proof
Definitions occuring in Statement : 
bag-decomp: bag-decomp(bs), 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
prop: ℙ, 
implies: P ⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
bag-decomp: bag-decomp(bs), 
and: P ∧ Q, 
quotient: x,y:A//B[x; y], 
bag: bag(T), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
permutation: permutation(T;L1;L2), 
ge: i ≥ j , 
nat: ℕ, 
sq_type: SQType(T), 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
less_than: a < b, 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
true: True, 
squash: ↓T, 
remove-nth: remove-nth(n;L), 
int_iseg: {i...j}, 
cand: A c∧ B, 
less_than': less_than'(a;b), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
inject: Inj(A;B;f), 
subtract: n - m, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
istype-universe, 
upto_wf, 
list-subtype-bag, 
subtype_rel_product, 
remove-nth_wf, 
length_wf, 
int_seg_wf, 
map_wf, 
permutation-equiv, 
permutation_wf, 
list_wf, 
quotient-member-eq, 
bag_wf, 
length_wf_nat, 
length_upto, 
length-map, 
int_term_value_constant_lemma, 
itermConstant_wf, 
int_seg_properties, 
member_wf, 
istype-less_than, 
istype-le, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
nat_properties, 
le_wf, 
set_subtype_base, 
istype-nat, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
le_weakening, 
int_seg_subtype, 
subtype_rel_dep_function, 
map_permute_list, 
permute_list_wf, 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
equal_wf, 
permute_list_length, 
inject_wf, 
list_extensionality, 
map-length, 
select-map, 
subtype_rel_list, 
top_wf, 
select-upto, 
lelt_wf, 
non_neg_length, 
select_wf, 
permute_list_select, 
select_upto, 
append_wf, 
firstn_wf, 
nth_tl_wf, 
subtract_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__equal_int, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
length-append, 
add_functionality_wrt_eq, 
length_firstn, 
length_nth_tl, 
subtype_rel_sets_simple, 
add_nat_wf, 
int_seg_subtype_nat, 
istype-false, 
istype-void, 
false_wf, 
permutation_inversion, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract_nat_wf, 
nat_wf, 
add-is-int-iff, 
subtype-base-respects-equality, 
change-equality-type, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtract-is-int-iff, 
equal-wf-base, 
equal-wf-T-base, 
select-append, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
length_firstn_eq, 
length_append, 
select-firstn, 
select-nth_tl, 
zero-add, 
select_nth_tl, 
select_firstn, 
respects-equality-list-bag, 
respects-equality-trivial, 
respects-equality-product, 
respects-equality-list
Rules used in proof : 
universeEquality, 
instantiate, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
equalityTransitivity, 
axiomEquality, 
equalitySymmetry, 
sqequalBase, 
equalityIstype, 
productIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
applyEquality, 
natural_numberEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
universeIsType, 
inhabitedIsType, 
lambdaEquality_alt, 
productElimination, 
promote_hyp, 
pertypeElimination, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
productEquality, 
thin, 
isectElimination, 
extract_by_obid, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_pairFormation_alt, 
Error :memTop, 
independent_pairFormation, 
applyLambdaEquality, 
hyp_replacement, 
closedConclusion, 
baseApply, 
dependent_set_memberEquality_alt, 
cumulativity, 
voidElimination, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
rename, 
setElimination, 
baseClosed, 
imageMemberEquality, 
intEquality, 
imageElimination, 
functionIsType, 
independent_pairEquality, 
addEquality, 
pointwiseFunctionality, 
equalityElimination, 
functionEquality, 
minusEquality, 
multiplyEquality, 
functionExtensionality
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    (bag-decomp(bs)  \mmember{}  bag(T  \mtimes{}  bag(T)))
Date html generated:
2020_05_20-AM-08_02_56
Last ObjectModification:
2020_01_31-PM-03_36_11
Theory : bags
Home
Index