Nuprl Lemma : select_nth_tl

[T:Type]. ∀[as:T List]. ∀[n:{0...||as||}]. ∀[i:ℕ||as|| n].  (nth_tl(n;as)[i] as[i n] ∈ T)


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| nth_tl: nth_tl(n;as) list: List int_iseg: {i...j} int_seg: {i..j-} uall: [x:A]. B[x] subtract: m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] int_iseg: {i...j} int_seg: {i..j-} uimplies: supposing a guard: {T} and: P ∧ Q lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B so_apply: x[s] nth_tl: nth_tl(n;as) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) cand: c∧ B ge: i ≥  less_than: a < b subtract: m
Lemmas referenced :  list_induction uall_wf int_iseg_wf length_wf int_seg_wf subtract_wf equal_wf select_wf nth_tl_wf int_seg_properties int_iseg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf squash_wf true_wf length_nth_tl iff_weakening_equal decidable__lt intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma list_wf length_of_nil_lemma nil_wf length_of_cons_lemma cons_wf le_int_wf bool_wf equal-wf-T-base assert_wf le_wf lt_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int reduce_tl_cons_lemma subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-zero add-is-int-iff false_wf non_neg_length lelt_wf select_cons_tl add-commutes add-swap add-associates
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality natural_numberEquality cumulativity hypothesis because_Cache setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality independent_functionElimination addEquality axiomEquality lambdaFormation equalityElimination instantiate productEquality pointwiseFunctionality promote_hyp baseApply closedConclusion dependent_set_memberEquality minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[n:\{0...||as||\}].  \mforall{}[i:\mBbbN{}||as||  -  n].    (nth\_tl(n;as)[i]  =  as[i  +  n])



Date html generated: 2017_04_14-AM-09_25_37
Last ObjectModification: 2017_02_27-PM-04_00_06

Theory : list_1


Home Index