Nuprl Lemma : bag-member-select

[A:Type]. ∀[L:A List]. ∀[i:ℕ||L||].  L[i] ↓∈ L


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-member: x ↓∈ bs exists: x:A. B[x] and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] prop: int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T
Lemmas referenced :  list-subtype-bag select_member equal_wf bag_wf l_member_wf select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairFormation hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination lambdaEquality hypothesis sqequalRule independent_pairFormation dependent_functionElimination productEquality cumulativity setElimination rename natural_numberEquality productElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[i:\mBbbN{}||L||].    L[i]  \mdownarrow{}\mmember{}  L



Date html generated: 2017_10_01-AM-08_53_57
Last ObjectModification: 2017_07_26-PM-04_35_45

Theory : bags


Home Index