Step
*
1
2
2
of Lemma
bag-summation-from-upto
1. n : ℤ
2. 0 < n
3. ∀[a,b:ℤ]. (b - a < n - 1
⇒ (∀[f:{a..b-} ⟶ ℤ]. (Σ(i∈[a, b)). f[i] = Σ(f[j + a] | j < b - a) ∈ ℤ)))
4. a : ℤ
5. b : ℤ
6. b - a < n
7. f : {a..b-} ⟶ ℤ
8. ¬a < b
⊢ Σ(i∈[a, b)). f[i] = Σ(f[j + a] | j < b - a) ∈ ℤ
BY
{ TACTIC:(RecUnfold `from-upto` 0
THEN AutoSplit
THEN Fold `empty-bag` 0
THEN (RWO "bag-summation-empty" 0 THENA Auto)) }
1
1. n : ℤ
2. 0 < n
3. ∀[a,b:ℤ]. (b - a < n - 1
⇒ (∀[f:{a..b-} ⟶ ℤ]. (Σ(i∈[a, b)). f[i] = Σ(f[j + a] | j < b - a) ∈ ℤ)))
4. a : ℤ
5. b : ℤ
6. ¬a < b
7. b - a < n
8. f : {a..b-} ⟶ ℤ
9. ¬a < b
⊢ 0 = Σ(f[j + a] | j < b - a) ∈ ℤ
Latex:
Latex:
1. n : \mBbbZ{}
2. 0 < n
3. \mforall{}[a,b:\mBbbZ{}]. (b - a < n - 1 {}\mRightarrow{} (\mforall{}[f:\{a..b\msupminus{}\} {}\mrightarrow{} \mBbbZ{}]. (\mSigma{}(i\mmember{}[a, b)). f[i] = \mSigma{}(f[j + a] | j < b - a))))
4. a : \mBbbZ{}
5. b : \mBbbZ{}
6. b - a < n
7. f : \{a..b\msupminus{}\} {}\mrightarrow{} \mBbbZ{}
8. \mneg{}a < b
\mvdash{} \mSigma{}(i\mmember{}[a, b)). f[i] = \mSigma{}(f[j + a] | j < b - a)
By
Latex:
TACTIC:(RecUnfold `from-upto` 0
THEN AutoSplit
THEN Fold `empty-bag` 0
THEN (RWO "bag-summation-empty" 0 THENA Auto))
Home
Index