Nuprl Lemma : bag-drop-property

[T:Type]
  ∀eq:EqDecider(T). ∀x:T. ∀bs:bag(T).
    ((bs ({x} bag-drop(eq;bs;x)) ∈ bag(T)) ∨ ((¬x ↓∈ bs) ∧ (bs bag-drop(eq;bs;x) ∈ bag(T))))


Proof




Definitions occuring in Statement :  bag-drop: bag-drop(eq;bs;a) bag-member: x ↓∈ bs bag-append: as bs single-bag: {x} bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] bag-drop: bag-drop(eq;bs;a) implies:  Q or: P ∨ Q exists: x:A. B[x] and: P ∧ Q outl: outl(x) prop: uimplies: supposing a isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True not: ¬A false: False guard: {T} cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag-remove1-property bag-remove1_wf bag_wf unit_wf2 and_wf equal_wf outl_wf assert_wf isl_wf bag-append_wf single-bag_wf btrue_wf bfalse_wf btrue_neq_bfalse not_wf bag-member_wf or_wf exists_wf equal-wf-T-base deq_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination unionEquality unionElimination inlFormation productElimination sqequalRule equalitySymmetry dependent_set_memberEquality independent_pairFormation equalityTransitivity applyLambdaEquality setElimination rename independent_isectElimination promote_hyp hyp_replacement natural_numberEquality independent_functionElimination voidElimination productEquality inrFormation lambdaEquality inlEquality baseClosed universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}bs:bag(T).
        ((bs  =  (\{x\}  +  bag-drop(eq;bs;x)))  \mvee{}  ((\mneg{}x  \mdownarrow{}\mmember{}  bs)  \mwedge{}  (bs  =  bag-drop(eq;bs;x))))



Date html generated: 2019_10_16-AM-11_31_19
Last ObjectModification: 2018_08_21-PM-01_59_20

Theory : bags_2


Home Index