Nuprl Lemma : CCC-compact
∀K:Type. (CCCNSet(K) ⇒ compact-type(K))
Proof
Definitions occuring in Statement : 
compact-type: compact-type(T), 
ccc-nset: CCCNSet(K), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
compact-type: compact-type(T), 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
not: ¬A, 
true: True, 
false: False, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ
Lemmas referenced : 
CCC-omni, 
not_wf, 
assert_wf, 
decidable__not, 
decidable__assert, 
eqtt_to_assert, 
istype-true, 
istype-void, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
btrue_wf, 
iff_imp_equal_bool, 
ccc-nset_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
applyEquality, 
universeIsType, 
because_Cache, 
unionElimination, 
inlFormation_alt, 
productElimination, 
dependent_pairFormation_alt, 
inhabitedIsType, 
equalityElimination, 
independent_isectElimination, 
natural_numberEquality, 
voidElimination, 
functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
inrFormation_alt, 
independent_pairFormation, 
productIsType, 
universeEquality
Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  compact-type(K))
Date html generated:
2019_10_15-AM-10_47_07
Last ObjectModification:
2019_06_20-AM-10_22_17
Theory : basic
Home
Index