Nuprl Lemma : fpf-sub_transitivity
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f,g,h:a:A fp-> B[a]].  (f ⊆ h) supposing (g ⊆ h and f ⊆ g)
Proof
Definitions occuring in Statement : 
fpf-sub: f ⊆ g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fpf-sub: f ⊆ g, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
cand: A c∧ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
top: Top, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
prop: ℙ
Lemmas referenced : 
assert_elim, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_wf, 
fpf-sub_witness, 
fpf-sub_wf, 
fpf_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_pairFormation, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g,h:a:A  fp->  B[a]].
    (f  \msubseteq{}  h)  supposing  (g  \msubseteq{}  h  and  f  \msubseteq{}  g)
Date html generated:
2018_05_21-PM-09_19_06
Last ObjectModification:
2018_02_09-AM-10_17_25
Theory : finite!partial!functions
Home
Index