Nuprl Lemma : csm-msg_wf
∀[V:Type]. ∀[sm:CSM(V)]. ∀[i,j:V]. ∀[a:Type(sm;i)]. ∀[b:csm-aux(sm;i)]. ∀[c:Cmd(sm) + Msg(sm)].
  csm-msg(sm;i;j;a;b;c) ∈ Msg(sm) supposing ↑csm-sends(sm;i;j;a;b;c)
Proof
Definitions occuring in Statement : 
csm-msg: csm-msg(sm;i;j;a;b;c), 
csm-sends: csm-sends(sm;i;j;a;b;c), 
csm-aux: csm-aux(sm;i), 
csm-type: Type(sm;i), 
csm-msgtype: Msg(sm), 
csm-cmd: Cmd(sm), 
csm: CSM(V), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
csm-msg: csm-msg(sm;i;j;a;b;c), 
spreadn: spread8, 
csm: CSM(V), 
csm-sends: csm-sends(sm;i;j;a;b;c), 
csm-cmd: Cmd(sm), 
pi1: fst(t), 
csm-msgtype: Msg(sm), 
pi2: snd(t), 
csm-aux: csm-aux(sm;i), 
csm-type: Type(sm;i), 
all: ∀x:A. B[x], 
or: P ∨ Q, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
true: True, 
bfalse: ff, 
false: False, 
prop: ℙ
Lemmas referenced : 
do-apply_wf, 
bool_cases_sqequal, 
assert_wf, 
csm-sends_wf, 
csm-cmd_wf, 
csm-msgtype_wf, 
csm-aux_wf, 
csm-type_wf, 
csm_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
dependent_functionElimination, 
unionElimination, 
hypothesis, 
natural_numberEquality, 
voidElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[V:Type].  \mforall{}[sm:CSM(V)].  \mforall{}[i,j:V].  \mforall{}[a:Type(sm;i)].  \mforall{}[b:csm-aux(sm;i)].  \mforall{}[c:Cmd(sm)  +  Msg(sm)].
    csm-msg(sm;i;j;a;b;c)  \mmember{}  Msg(sm)  supposing  \muparrow{}csm-sends(sm;i;j;a;b;c)
 Date html generated: 
2016_05_15-PM-05_11_56
 Last ObjectModification: 
2015_12_27-PM-02_22_52
Theory : general
Home
Index