Step
*
2
1
2
of Lemma
def-cont-induction-lemma
1. [P] : ℕ ⟶ ℙ
2. ∀n:ℕ. (P[n]
⇒ P[n + 1])
3. l : ℤ
4. q : ℤ List
5. ∀[n,m:ℕ]. P[n]
⇒ P[m] supposing (q = [n, m) ∈ (ℤ List)) ∧ (n ≤ m)
6. [n] : ℕ
7. [m] : ℕ
8. [l / q] = [n, m) ∈ (ℤ List)
9. n ≤ m
10. P[n]
11. (q = [n + 1, m) ∈ (ℤ List)) ∧ (l = n ∈ ℤ)
⊢ P[m]
BY
{ (D -1 THEN (InstHyp [⌜l⌝] 2⋅ THENA Auto)) }
1
1. [P] : ℕ ⟶ ℙ
2. ∀n:ℕ. (P[n]
⇒ P[n + 1])
3. l : ℤ
4. q : ℤ List
5. ∀[n,m:ℕ]. P[n]
⇒ P[m] supposing (q = [n, m) ∈ (ℤ List)) ∧ (n ≤ m)
6. [n] : ℕ
7. [m] : ℕ
8. [l / q] = [n, m) ∈ (ℤ List)
9. n ≤ m
10. P[n]
11. q = [n + 1, m) ∈ (ℤ List)
12. l = n ∈ ℤ
13. P[l + 1]
⊢ P[m]
Latex:
Latex:
1. [P] : \mBbbN{} {}\mrightarrow{} \mBbbP{}
2. \mforall{}n:\mBbbN{}. (P[n] {}\mRightarrow{} P[n + 1])
3. l : \mBbbZ{}
4. q : \mBbbZ{} List
5. \mforall{}[n,m:\mBbbN{}]. P[n] {}\mRightarrow{} P[m] supposing (q = [n, m)) \mwedge{} (n \mleq{} m)
6. [n] : \mBbbN{}
7. [m] : \mBbbN{}
8. [l / q] = [n, m)
9. n \mleq{} m
10. P[n]
11. (q = [n + 1, m)) \mwedge{} (l = n)
\mvdash{} P[m]
By
Latex:
(D -1 THEN (InstHyp [\mkleeneopen{}l\mkleeneclose{}] 2\mcdot{} THENA Auto))
Home
Index