Nuprl Lemma : fact_unroll_1

[n:ℤ]. (n)! (n 1)! supposing ¬(n 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  fact: (n)! uimplies: supposing a uall: [x:A]. B[x] not: ¬A multiply: m subtract: m natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  not: ¬A false: False bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  fact_unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache independent_functionElimination voidElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityEquality sqequalAxiom intEquality isect_memberEquality

Latex:
\mforall{}[n:\mBbbZ{}].  (n)!  \msim{}  n  *  (n  -  1)!  supposing  \mneg{}(n  =  0)



Date html generated: 2016_05_15-PM-04_04_59
Last ObjectModification: 2015_12_27-PM-03_03_17

Theory : general


Home Index