Nuprl Lemma : formulaco-ext

formulaco() ≡ lbl:Atom × if lbl =a "var" then Atom
                         if lbl =a "not" then formulaco()
                         if lbl =a "and" then left:formulaco() × formulaco()
                         if lbl =a "or" then left:formulaco() × formulaco()
                         if lbl =a "imp" then left:formulaco() × formulaco()
                         else Void
                         fi 


Proof




Definitions occuring in Statement :  formulaco: formulaco() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] token: "$token" atom: Atom void: Void
Definitions unfolded in proof :  formulaco: formulaco() uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T])
Lemmas referenced :  corec-ext ifthenelse_wf eq_atom_wf subtype_rel_product bool_wf eqtt_to_assert assert_of_eq_atom subtype_rel_self eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom subtype_rel_wf strong-continuous-depproduct continuous-constant continuous-id strong-continuous-product subtype_rel_weakening nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality atomEquality instantiate hypothesisEquality tokenEquality hypothesis universeEquality cumulativity voidEquality independent_isectElimination independent_pairFormation isect_memberFormation because_Cache lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination independent_functionElimination voidElimination axiomEquality isect_memberEquality isectEquality applyEquality functionExtensionality functionEquality

Latex:
formulaco()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "var"  then  Atom
                                                  if  lbl  =a  "not"  then  formulaco()
                                                  if  lbl  =a  "and"  then  left:formulaco()  \mtimes{}  formulaco()
                                                  if  lbl  =a  "or"  then  left:formulaco()  \mtimes{}  formulaco()
                                                  if  lbl  =a  "imp"  then  left:formulaco()  \mtimes{}  formulaco()
                                                  else  Void
                                                  fi 



Date html generated: 2018_05_21-PM-08_47_22
Last ObjectModification: 2017_07_26-PM-06_10_18

Theory : general


Home Index