Step
*
1
1
of Lemma
fseg_extend
1. T : Type
2. l1 : T List
3. v : T
4. l2 : T List
5. L : T List
6. l2 = (L @ l1) ∈ (T List)
7. ||l1|| < ||l2||
8. l2[||l2|| - ||l1|| + 1] = v ∈ T
9. ¬↑null(L)
10. L' : T List
11. L = (L' @ [last(L)]) ∈ (T List)
⊢ (L' @ [last(L)] @ l1) = (L' @ [v / l1]) ∈ (T List)
BY
{ (((EqCD THEN Auto) THEN Reduce 0) THEN EqCD THEN Auto) }
1
.....subterm..... T:t
1:n
1. T : Type
2. l1 : T List
3. v : T
4. l2 : T List
5. L : T List
6. l2 = (L @ l1) ∈ (T List)
7. ||l1|| < ||l2||
8. l2[||l2|| - ||l1|| + 1] = v ∈ T
9. ¬↑null(L)
10. L' : T List
11. L = (L' @ [last(L)]) ∈ (T List)
⊢ last(L) = v ∈ T
Latex:
Latex:
1. T : Type
2. l1 : T List
3. v : T
4. l2 : T List
5. L : T List
6. l2 = (L @ l1)
7. ||l1|| < ||l2||
8. l2[||l2|| - ||l1|| + 1] = v
9. \mneg{}\muparrow{}null(L)
10. L' : T List
11. L = (L' @ [last(L)])
\mvdash{} (L' @ [last(L)] @ l1) = (L' @ [v / l1])
By
Latex:
(((EqCD THEN Auto) THEN Reduce 0) THEN EqCD THEN Auto)
Home
Index