Nuprl Lemma : fseg_extend
∀[T:Type]
  ∀l1:T List. ∀v:T. ∀l2:T List.
    (fseg(T;l1;l2) 
⇒ fseg(T;[v / l1];l2) supposing ||l1|| < ||l2|| c∧ (l2[||l2|| - ||l1|| + 1] = v ∈ T))
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2)
, 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fseg: fseg(T;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
cons: [a / b]
, 
bfalse: ff
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
true: True
, 
nat_plus: ℕ+
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
last: last(L)
Lemmas referenced : 
member-less_than, 
length_wf, 
length_wf_nat, 
equal_wf, 
nat_wf, 
list-cases, 
null_nil_lemma, 
less_than_wf, 
list_ind_nil_lemma, 
satisfiable-full-omega-tt, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
product_subtype_list, 
null_cons_lemma, 
false_wf, 
last_lemma, 
exists_wf, 
list_wf, 
append_wf, 
cons_wf, 
select_wf, 
subtract_wf, 
decidable__le, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
non_neg_length, 
decidable__lt, 
append_assoc, 
squash_wf, 
true_wf, 
list_ind_cons_lemma, 
length_of_nil_lemma, 
length_of_cons_lemma, 
add_nat_plus, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
last_wf, 
le_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
select_append_front, 
length-append, 
lelt_wf, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
axiomEquality, 
rename, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
because_Cache, 
productEquality, 
addEquality, 
independent_pairFormation, 
universeEquality, 
applyEquality, 
equalityTransitivity, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type]
    \mforall{}l1:T  List.  \mforall{}v:T.  \mforall{}l2:T  List.
        (fseg(T;l1;l2)
        {}\mRightarrow{}  fseg(T;[v  /  l1];l2)  supposing  ||l1||  <  ||l2||  c\mwedge{}  (l2[||l2||  -  ||l1||  +  1]  =  v))
Date html generated:
2018_05_21-PM-06_30_18
Last ObjectModification:
2017_07_26-PM-04_50_38
Theory : general
Home
Index