Nuprl Lemma : fseg_extend

[T:Type]
  ∀l1:T List. ∀v:T. ∀l2:T List.
    (fseg(T;l1;l2)  fseg(T;[v l1];l2) supposing ||l1|| < ||l2|| c∧ (l2[||l2|| ||l1|| 1] v ∈ T))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) select: L[n] length: ||as|| cons: [a b] list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B all: x:A. B[x] implies:  Q subtract: m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T cand: c∧ B exists: x:A. B[x] prop: or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A cons: [a b] bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) ge: i ≥  le: A ≤ B true: True nat_plus: + less_than': less_than'(a;b) guard: {T} uiff: uiff(P;Q) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k last: last(L)
Lemmas referenced :  member-less_than length_wf length_wf_nat equal_wf nat_wf list-cases null_nil_lemma less_than_wf list_ind_nil_lemma satisfiable-full-omega-tt intformless_wf itermVar_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf product_subtype_list null_cons_lemma false_wf last_lemma exists_wf list_wf append_wf cons_wf select_wf subtract_wf decidable__le intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_add_lemma non_neg_length decidable__lt append_assoc squash_wf true_wf list_ind_cons_lemma length_of_nil_lemma length_of_cons_lemma add_nat_plus nat_plus_wf nat_plus_properties add-is-int-iff intformeq_wf int_formula_prop_eq_lemma last_wf le_wf length_append subtype_rel_list top_wf iff_weakening_equal select_append_front length-append lelt_wf decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis independent_isectElimination axiomEquality rename dependent_set_memberEquality dependent_functionElimination unionElimination equalitySymmetry hyp_replacement applyLambdaEquality setElimination isect_memberEquality voidElimination voidEquality imageElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll promote_hyp hypothesis_subsumption because_Cache productEquality addEquality independent_pairFormation universeEquality applyEquality equalityTransitivity imageMemberEquality baseClosed independent_functionElimination pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[T:Type]
    \mforall{}l1:T  List.  \mforall{}v:T.  \mforall{}l2:T  List.
        (fseg(T;l1;l2)
        {}\mRightarrow{}  fseg(T;[v  /  l1];l2)  supposing  ||l1||  <  ||l2||  c\mwedge{}  (l2[||l2||  -  ||l1||  +  1]  =  v))



Date html generated: 2018_05_21-PM-06_30_18
Last ObjectModification: 2017_07_26-PM-04_50_38

Theory : general


Home Index