Nuprl Lemma : fun_with_inv_is_bij2
∀[A,B:Type].  ∀f:A ⟶ B. ((∃g:B ⟶ A. InvFuns(A;B;f;g)) 
⇒ Bij(A;B;f))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
inv_funs: InvFuns(A;B;f;g)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
fun_with_inv_is_bij, 
exists_wf, 
inv_funs_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_isectElimination, 
hypothesis, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  ((\mexists{}g:B  {}\mrightarrow{}  A.  InvFuns(A;B;f;g))  {}\mRightarrow{}  Bij(A;B;f))
Date html generated:
2016_05_15-PM-03_21_54
Last ObjectModification:
2015_12_27-PM-01_04_33
Theory : general
Home
Index