Nuprl Lemma : fun_with_inv_is_bij2

[A,B:Type].  ∀f:A ⟶ B. ((∃g:B ⟶ A. InvFuns(A;B;f;g))  Bij(A;B;f))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) inv_funs: InvFuns(A;B;f;g) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  fun_with_inv_is_bij exists_wf inv_funs_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesisEquality dependent_functionElimination independent_isectElimination hypothesis functionEquality sqequalRule lambdaEquality universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  ((\mexists{}g:B  {}\mrightarrow{}  A.  InvFuns(A;B;f;g))  {}\mRightarrow{}  Bij(A;B;f))



Date html generated: 2016_05_15-PM-03_21_54
Last ObjectModification: 2015_12_27-PM-01_04_33

Theory : general


Home Index