Step
*
2
1
of Lemma
general_length_nth_tl
.....truecase.....
1. r : ℤ
2. 0 < r
3. ∀[L:Top List]. (||nth_tl(r - 1;L)|| = if r - 1 <z ||L|| then ||L|| - r - 1 else 0 fi ∈ ℤ)
4. L : Top List
5. 0 < r
6. r < ||L||
⊢ ||nth_tl(r - 1;tl(L))|| = (||L|| - r) ∈ ℤ
BY
{ xxx(((InstHyp [⌜tl(L)⌝] 3)⋅ THENA Auto)
THEN (RWO "length_tl" (-1))
THEN Auto
THEN (MoveToConcl (-1))
THEN SplitOnConclITE
THEN Auto')xxx }
Latex:
Latex:
.....truecase.....
1. r : \mBbbZ{}
2. 0 < r
3. \mforall{}[L:Top List]. (||nth\_tl(r - 1;L)|| = if r - 1 <z ||L|| then ||L|| - r - 1 else 0 fi )
4. L : Top List
5. 0 < r
6. r < ||L||
\mvdash{} ||nth\_tl(r - 1;tl(L))|| = (||L|| - r)
By
Latex:
xxx(((InstHyp [\mkleeneopen{}tl(L)\mkleeneclose{}] 3)\mcdot{} THENA Auto)
THEN (RWO "length\_tl" (-1))
THEN Auto
THEN (MoveToConcl (-1))
THEN SplitOnConclITE
THEN Auto')xxx
Home
Index