Step
*
1
1
1
2
1
of Lemma
iroot-lemma2
1. n : ℕ+
2. a : ℕ
3. k : ℕ+
4. y : ℕ+
5. b : ℕ+
6. M : ℕ+
7. a + k ∈ ℕ+
8. a + k < M^n
9. (n * b * M^(n - 1)) ≤ (k * y)
10. (a + k) * y^n ∈ ℕ+
11. iroot(n;(a + k) * y^n) < M * y
12. (iroot(n;(a + k) * y^n)^n ≤ ((a + k) * y^n)) ∧ (a + k) * y^n < (iroot(n;(a + k) * y^n) + 1)^n
⊢ a * y^n < ((iroot(n;(a + k) * y^n) ÷ b) * b)^n
BY
{ Assert ⌜(iroot(n;(a + k) * y^n) + 1)^n ≤ (((iroot(n;(a + k) * y^n) ÷ b) * b)^n + (n * b * (M * y)^(n - 1)))⌝⋅ }
1
.....assertion.....
1. n : ℕ+
2. a : ℕ
3. k : ℕ+
4. y : ℕ+
5. b : ℕ+
6. M : ℕ+
7. a + k ∈ ℕ+
8. a + k < M^n
9. (n * b * M^(n - 1)) ≤ (k * y)
10. (a + k) * y^n ∈ ℕ+
11. iroot(n;(a + k) * y^n) < M * y
12. (iroot(n;(a + k) * y^n)^n ≤ ((a + k) * y^n)) ∧ (a + k) * y^n < (iroot(n;(a + k) * y^n) + 1)^n
⊢ (iroot(n;(a + k) * y^n) + 1)^n ≤ (((iroot(n;(a + k) * y^n) ÷ b) * b)^n + (n * b * (M * y)^(n - 1)))
2
1. n : ℕ+
2. a : ℕ
3. k : ℕ+
4. y : ℕ+
5. b : ℕ+
6. M : ℕ+
7. a + k ∈ ℕ+
8. a + k < M^n
9. (n * b * M^(n - 1)) ≤ (k * y)
10. (a + k) * y^n ∈ ℕ+
11. iroot(n;(a + k) * y^n) < M * y
12. (iroot(n;(a + k) * y^n)^n ≤ ((a + k) * y^n)) ∧ (a + k) * y^n < (iroot(n;(a + k) * y^n) + 1)^n
13. (iroot(n;(a + k) * y^n) + 1)^n ≤ (((iroot(n;(a + k) * y^n) ÷ b) * b)^n + (n * b * (M * y)^(n - 1)))
⊢ a * y^n < ((iroot(n;(a + k) * y^n) ÷ b) * b)^n
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. a : \mBbbN{}
3. k : \mBbbN{}\msupplus{}
4. y : \mBbbN{}\msupplus{}
5. b : \mBbbN{}\msupplus{}
6. M : \mBbbN{}\msupplus{}
7. a + k \mmember{} \mBbbN{}\msupplus{}
8. a + k < M\^{}n
9. (n * b * M\^{}(n - 1)) \mleq{} (k * y)
10. (a + k) * y\^{}n \mmember{} \mBbbN{}\msupplus{}
11. iroot(n;(a + k) * y\^{}n) < M * y
12. (iroot(n;(a + k) * y\^{}n)\^{}n \mleq{} ((a + k) * y\^{}n)) \mwedge{} (a + k) * y\^{}n < (iroot(n;(a + k) * y\^{}n) + 1)\^{}n
\mvdash{} a * y\^{}n < ((iroot(n;(a + k) * y\^{}n) \mdiv{} b) * b)\^{}n
By
Latex:
Assert \mkleeneopen{}(iroot(n;(a + k) * y\^{}n) + 1)\^{}n \mleq{} (((iroot(n;(a + k) * y\^{}n) \mdiv{} b) * b)\^{}n
+ (n * b * (M * y)\^{}(n - 1)))\mkleeneclose{}\mcdot{}
Home
Index