Nuprl Lemma : iroot-lemma2

a:ℕ. ∀n,b,k:ℕ+.  (∃p:ℕ × ℕ+ [let x,y in y^n < (x b)^n ∧ ((x b)^n ≤ ((a k) y^n))])


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: less_than: a < b le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q spread: spread def product: x:A × B[x] multiply: m add: m
Definitions unfolded in proof :  all: x:A. B[x] sq_exists: x:A [B[x]] member: t ∈ T nat_plus: + uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B less_than: a < b squash: T less_than': less_than'(a;b) true: True guard: {T} uiff: uiff(P;Q) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) le: A ≤ B nequal: a ≠ b ∈  cand: c∧ B iff: ⇐⇒ Q subtract: m rev_implies:  Q
Lemmas referenced :  iroot_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le add_nat_plus istype-less_than decidable__lt add-is-int-iff intformeq_wf int_formula_prop_eq_lemma false_wf value-type-has-value nat_plus_wf set-value-type less_than_wf int-value-type exp-fastexp subtract_wf itermSubtract_wf int_term_value_subtract_lemma divide_wf multiply_nat_wf exp_wf4 exp_wf2 mul_bounds_1a nat_wf le_wf nat_plus_subtype_nat istype-nat iroot-property subtype_base_sq set_subtype_base int_subtype_base multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma div_rem_sum nat_plus_inc_int_nzero rem_bounds_1 div_bounds_1 mul_nat_plus exp_wf_nat_plus exp_preserves_le squash_wf true_wf exp-of-mul subtype_rel_self iff_weakening_equal mul_preserves_lt mul_preserves_le add_nat_wf istype-false decidable__equal_int exp-difference-inequality subtract-add-cancel subtract-is-int-iff exp_step add-commutes mul-swap mul-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt dependent_set_memberFormation_alt cut dependent_set_memberEquality_alt addEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality imageMemberEquality baseClosed inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion productElimination equalityIsType1 callbyvalueReduce multiplyEquality independent_pairEquality productIsType instantiate cumulativity intEquality imageElimination divideEquality equalityIsType4 universeEquality remainderEquality hyp_replacement minusEquality

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}n,b,k:\mBbbN{}\msupplus{}.    (\mexists{}p:\mBbbN{}  \mtimes{}  \mBbbN{}\msupplus{}  [let  x,y  =  p  in  a  *  y\^{}n  <  (x  *  b)\^{}n  \mwedge{}  ((x  *  b)\^{}n  \mleq{}  ((a  +  k)  *  y\^{}n))])



Date html generated: 2019_10_15-AM-11_24_28
Last ObjectModification: 2018_10_18-PM-11_44_02

Theory : general


Home Index