Nuprl Lemma : iroot-lemma2
∀a:ℕ. ∀n,b,k:ℕ+.  (∃p:ℕ × ℕ+ [let x,y = p in a * y^n < (x * b)^n ∧ ((x * b)^n ≤ ((a + k) * y^n))])
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
spread: spread def, 
product: x:A × B[x]
, 
multiply: n * m
, 
add: n + m
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
le: A ≤ B
, 
nequal: a ≠ b ∈ T 
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
subtract: n - m
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
iroot_wf, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
add_nat_plus, 
istype-less_than, 
decidable__lt, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
value-type-has-value, 
nat_plus_wf, 
set-value-type, 
less_than_wf, 
int-value-type, 
exp-fastexp, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
divide_wf, 
multiply_nat_wf, 
exp_wf4, 
exp_wf2, 
mul_bounds_1a, 
nat_wf, 
le_wf, 
nat_plus_subtype_nat, 
istype-nat, 
iroot-property, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
div_rem_sum, 
nat_plus_inc_int_nzero, 
rem_bounds_1, 
div_bounds_1, 
mul_nat_plus, 
exp_wf_nat_plus, 
exp_preserves_le, 
squash_wf, 
true_wf, 
exp-of-mul, 
subtype_rel_self, 
iff_weakening_equal, 
mul_preserves_lt, 
mul_preserves_le, 
add_nat_wf, 
istype-false, 
decidable__equal_int, 
exp-difference-inequality, 
subtract-add-cancel, 
subtract-is-int-iff, 
exp_step, 
add-commutes, 
mul-swap, 
mul-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
dependent_set_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
addEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
productElimination, 
equalityIsType1, 
callbyvalueReduce, 
multiplyEquality, 
independent_pairEquality, 
productIsType, 
instantiate, 
cumulativity, 
intEquality, 
imageElimination, 
divideEquality, 
equalityIsType4, 
universeEquality, 
remainderEquality, 
hyp_replacement, 
minusEquality
Latex:
\mforall{}a:\mBbbN{}.  \mforall{}n,b,k:\mBbbN{}\msupplus{}.    (\mexists{}p:\mBbbN{}  \mtimes{}  \mBbbN{}\msupplus{}  [let  x,y  =  p  in  a  *  y\^{}n  <  (x  *  b)\^{}n  \mwedge{}  ((x  *  b)\^{}n  \mleq{}  ((a  +  k)  *  y\^{}n))])
Date html generated:
2019_10_15-AM-11_24_28
Last ObjectModification:
2018_10_18-PM-11_44_02
Theory : general
Home
Index