Nuprl Lemma : isl-ite
∀[x:𝔹]. ∀[a,b:Top + Top].  (isl(if x then a else b fi ) ~ (isl(a) ∧b x) ∨b(isl(b) ∧b (¬bx)))
Proof
Definitions occuring in Statement : 
bor: p ∨bq, 
band: p ∧b q, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
top: Top, 
union: left + right, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
squash: ↓T, 
prop: ℙ, 
band: p ∧b q, 
bfalse: ff, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
assert: ↑b, 
false: False, 
isl: isl(x), 
bor: p ∨bq
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
subtype_base_sq, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
bor_wf, 
isl_wf, 
top_wf, 
band_ff_simp, 
iff_weakening_equal, 
band_tt_simp, 
bfalse_wf, 
bor_ff_simp, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
instantiate, 
cumulativity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
sqequalAxiom, 
unionEquality, 
isect_memberEquality, 
dependent_pairFormation, 
promote_hyp, 
voidElimination
Latex:
\mforall{}[x:\mBbbB{}].  \mforall{}[a,b:Top  +  Top].    (isl(if  x  then  a  else  b  fi  )  \msim{}  (isl(a)  \mwedge{}\msubb{}  x)  \mvee{}\msubb{}(isl(b)  \mwedge{}\msubb{}  (\mneg{}\msubb{}x)))
Date html generated:
2017_10_01-AM-09_12_39
Last ObjectModification:
2017_07_26-PM-04_48_17
Theory : general
Home
Index