Step
*
3
1
5
2
of Lemma
longest-prefix_property'
1. [T] : Type
2. u : T
3. u1 : T
4. v : T List
5. P : T List+ ⟶ 𝔹
6. ¬↑(P [u])
7. [] ≤ [u1 / v]
8. [] < [u1 / v] supposing 0 < ||v|| + 1
9. (([] = [] ∈ (T List)) ∧ (∀L':T List. ([] < L'
⇒ L' < [u1 / v]
⇒ (¬↑(P [u / L'])))))
∨ (0 < 0 ∧ False ∧ (∀L':T List. ([] < L'
⇒ L' < [u1 / v]
⇒ (¬↑(P [u / L'])))))
10. [] ≤ [u; [u1 / v]]
11. [] < [u; [u1 / v]] supposing 0 < (||v|| + 1) + 1
⊢ (([] = [] ∈ (T List)) ∧ (∀L':T List. ([] < L'
⇒ L' < [u; [u1 / v]]
⇒ (¬↑(P L')))))
∨ (0 < 0 ∧ (↑(P [])) ∧ (∀L':T List. ([] < L'
⇒ L' < [u; [u1 / v]]
⇒ (¬↑(P L')))))
BY
{ ((SplitOrHyps THEN Auto) THEN OrLeft THEN Auto THEN D -3 THEN Auto) }
1
1. T : Type
2. u : T
3. u1 : T
4. v : T List
5. P : T List+ ⟶ 𝔹
6. ¬↑(P [u])
7. [] ≤ [u1 / v]
8. [] < [u1 / v] supposing 0 < ||v|| + 1
9. [] = [] ∈ (T List)
10. ∀L':T List. ([] < L'
⇒ L' < [u1 / v]
⇒ (¬↑(P [u / L'])))
11. [] ≤ [u; [u1 / v]]
12. [] < [u; [u1 / v]] supposing 0 < (||v|| + 1) + 1
13. [] = [] ∈ (T List)
14. [] < []
15. [] < [u; [u1 / v]]
⊢ ¬↑(P [])
2
1. T : Type
2. u : T
3. u1 : T
4. v : T List
5. P : T List+ ⟶ 𝔹
6. ¬↑(P [u])
7. [] ≤ [u1 / v]
8. [] < [u1 / v] supposing 0 < ||v|| + 1
9. [] = [] ∈ (T List)
10. ∀L':T List. ([] < L'
⇒ L' < [u1 / v]
⇒ (¬↑(P [u / L'])))
11. [] ≤ [u; [u1 / v]]
12. [] < [u; [u1 / v]] supposing 0 < (||v|| + 1) + 1
13. [] = [] ∈ (T List)
14. u2 : T
15. v1 : T List
16. [] < [u2 / v1]
17. [u2 / v1] < [u; [u1 / v]]
⊢ ¬↑(P [u2 / v1])
3
1. T : Type
2. u : T
3. u1 : T
4. v : T List
5. P : T List+ ⟶ 𝔹
6. ¬↑(P [u])
7. [] ≤ [u1 / v]
8. [] < [u1 / v] supposing 0 < ||v|| + 1
9. [] = [] ∈ (T List)
10. ∀L':T List. ([] < L'
⇒ L' < [u1 / v]
⇒ (¬↑(P [u / L'])))
11. [] ≤ [u; [u1 / v]]
12. [] < [u; [u1 / v]] supposing 0 < (||v|| + 1) + 1
13. [] = [] ∈ (T List)
14. [] < []
15. [] < [u; [u1 / v]]
⊢ [] ∈ T List+
Latex:
Latex:
1. [T] : Type
2. u : T
3. u1 : T
4. v : T List
5. P : T List\msupplus{} {}\mrightarrow{} \mBbbB{}
6. \mneg{}\muparrow{}(P [u])
7. [] \mleq{} [u1 / v]
8. [] < [u1 / v] supposing 0 < ||v|| + 1
9. (([] = []) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [u1 / v] {}\mRightarrow{} (\mneg{}\muparrow{}(P [u / L'])))))
\mvee{} (0 < 0 \mwedge{} False \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [u1 / v] {}\mRightarrow{} (\mneg{}\muparrow{}(P [u / L'])))))
10. [] \mleq{} [u; [u1 / v]]
11. [] < [u; [u1 / v]] supposing 0 < (||v|| + 1) + 1
\mvdash{} (([] = []) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [u; [u1 / v]] {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))
\mvee{} (0 < 0 \mwedge{} (\muparrow{}(P [])) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [u; [u1 / v]] {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))
By
Latex:
((SplitOrHyps THEN Auto) THEN OrLeft THEN Auto THEN D -3 THEN Auto)
Home
Index