Step
*
2
1
2
of Lemma
longest-prefix_property2
1. T : Type
2. L : T List
3. P : (T List) ⟶ 𝔹
4. longest-prefix(P;L) ≤ L
5. longest-prefix(P;L) < L supposing 0 < ||L||
6. ↑(P longest-prefix(P;L))
7. ∀L':T List. (longest-prefix(P;L) < L'
⇒ L' < L
⇒ (¬↑(P L')))
8. L2 : T List
9. L = (longest-prefix(P;L) @ L2) ∈ (T List)
10. L' : T List
11. [] < L'
12. L' < L2
⊢ longest-prefix(P;L) @ L' < L
BY
{ Assert ⌜longest-prefix(P;L) @ L' < longest-prefix(P;L) @ L2⌝⋅ }
1
.....assertion.....
1. T : Type
2. L : T List
3. P : (T List) ⟶ 𝔹
4. longest-prefix(P;L) ≤ L
5. longest-prefix(P;L) < L supposing 0 < ||L||
6. ↑(P longest-prefix(P;L))
7. ∀L':T List. (longest-prefix(P;L) < L'
⇒ L' < L
⇒ (¬↑(P L')))
8. L2 : T List
9. L = (longest-prefix(P;L) @ L2) ∈ (T List)
10. L' : T List
11. [] < L'
12. L' < L2
⊢ longest-prefix(P;L) @ L' < longest-prefix(P;L) @ L2
2
1. T : Type
2. L : T List
3. P : (T List) ⟶ 𝔹
4. longest-prefix(P;L) ≤ L
5. longest-prefix(P;L) < L supposing 0 < ||L||
6. ↑(P longest-prefix(P;L))
7. ∀L':T List. (longest-prefix(P;L) < L'
⇒ L' < L
⇒ (¬↑(P L')))
8. L2 : T List
9. L = (longest-prefix(P;L) @ L2) ∈ (T List)
10. L' : T List
11. [] < L'
12. L' < L2
13. longest-prefix(P;L) @ L' < longest-prefix(P;L) @ L2
⊢ longest-prefix(P;L) @ L' < L
Latex:
Latex:
1. T : Type
2. L : T List
3. P : (T List) {}\mrightarrow{} \mBbbB{}
4. longest-prefix(P;L) \mleq{} L
5. longest-prefix(P;L) < L supposing 0 < ||L||
6. \muparrow{}(P longest-prefix(P;L))
7. \mforall{}L':T List. (longest-prefix(P;L) < L' {}\mRightarrow{} L' < L {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))
8. L2 : T List
9. L = (longest-prefix(P;L) @ L2)
10. L' : T List
11. [] < L'
12. L' < L2
\mvdash{} longest-prefix(P;L) @ L' < L
By
Latex:
Assert \mkleeneopen{}longest-prefix(P;L) @ L' < longest-prefix(P;L) @ L2\mkleeneclose{}\mcdot{}
Home
Index