Step
*
2
2
1
2
2
of Lemma
p-fun-exp-add-sq
.....falsecase.....
1. A : Type
2. f : A ⟶ (A + Top)
3. x : A
4. m : ℤ
5. 0 < m
6. ∀[n:ℕ]. f^n + (m - 1) x ~ f^n do-apply(f^m - 1;x) supposing ↑can-apply(f^m - 1;x)
7. n : ℕ
8. ↑can-apply(f^m;x)
9. ¬(n = 0 ∈ ℤ)
10. 1 ≤ (n + m)
11. 1 ≤ n
12. 1 ≤ m
13. ¬↑can-apply(f^m - 1;x)
⊢ f o f^n do-apply(f^m - 1;x) ~ f o f^n - 1 outl(f^m - 1 x)
BY
{ xxx(D -1 THEN Using [`n',⌜m⌝] (BLemma `can-apply-fun-exp`) ⋅ THEN Auto)xxx }
Latex:
Latex:
.....falsecase.....
1. A : Type
2. f : A {}\mrightarrow{} (A + Top)
3. x : A
4. m : \mBbbZ{}
5. 0 < m
6. \mforall{}[n:\mBbbN{}]. f\^{}n + (m - 1) x \msim{} f\^{}n do-apply(f\^{}m - 1;x) supposing \muparrow{}can-apply(f\^{}m - 1;x)
7. n : \mBbbN{}
8. \muparrow{}can-apply(f\^{}m;x)
9. \mneg{}(n = 0)
10. 1 \mleq{} (n + m)
11. 1 \mleq{} n
12. 1 \mleq{} m
13. \mneg{}\muparrow{}can-apply(f\^{}m - 1;x)
\mvdash{} f o f\^{}n do-apply(f\^{}m - 1;x) \msim{} f o f\^{}n - 1 outl(f\^{}m - 1 x)
By
Latex:
xxx(D -1 THEN Using [`n',\mkleeneopen{}m\mkleeneclose{}] (BLemma `can-apply-fun-exp`) \mcdot{} THEN Auto)xxx
Home
Index