Nuprl Lemma : power-sum-linear
∀[n:ℕ]. ∀[x:ℤ]. ∀[a,b:ℕn ⟶ ℤ]. ∀[c,d:ℤ].
  (Σi<n.(c * a[i]) + (d * b[i])*x^i = ((c * Σi<n.a[i]*x^i) + (d * Σi<n.b[i]*x^i)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
power-sum: Σi<n.a[i]*x^i
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
power-sum: Σi<n.a[i]*x^i
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
int_seg_wf, 
nat_wf, 
sum_wf, 
exp_wf2, 
int_seg_subtype_nat, 
false_wf, 
equal_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
sum_scalar_mult, 
iff_weakening_equal, 
sum_linear, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
le_wf, 
lelt_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
functionEquality, 
extract_by_obid, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
multiplyEquality, 
addEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_set_memberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[c,d:\mBbbZ{}].
    (\mSigma{}i<n.(c  *  a[i])  +  (d  *  b[i])*x\^{}i  =  ((c  *  \mSigma{}i<n.a[i]*x\^{}i)  +  (d  *  \mSigma{}i<n.b[i]*x\^{}i)))
Date html generated:
2018_05_21-PM-08_30_16
Last ObjectModification:
2017_07_26-PM-05_57_20
Theory : general
Home
Index