Nuprl Lemma : power-sum-linear

[n:ℕ]. ∀[x:ℤ]. ∀[a,b:ℕn ⟶ ℤ]. ∀[c,d:ℤ].
  i<n.(c a[i]) (d b[i])*x^i ((c * Σi<n.a[i]*x^i) (d * Σi<n.b[i]*x^i)) ∈ ℤ)


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T power-sum: Σi<n.a[i]*x^i nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  int_seg_wf nat_wf sum_wf exp_wf2 int_seg_subtype_nat false_wf equal_wf squash_wf true_wf add_functionality_wrt_eq sum_scalar_mult iff_weakening_equal sum_linear int_seg_properties nat_properties decidable__equal_int le_wf lelt_wf satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis intEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache functionEquality extract_by_obid natural_numberEquality setElimination rename lambdaEquality multiplyEquality addEquality applyEquality functionExtensionality independent_isectElimination independent_pairFormation lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination dependent_functionElimination unionElimination dependent_set_memberEquality dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[c,d:\mBbbZ{}].
    (\mSigma{}i<n.(c  *  a[i])  +  (d  *  b[i])*x\^{}i  =  ((c  *  \mSigma{}i<n.a[i]*x\^{}i)  +  (d  *  \mSigma{}i<n.b[i]*x\^{}i)))



Date html generated: 2018_05_21-PM-08_30_16
Last ObjectModification: 2017_07_26-PM-05_57_20

Theory : general


Home Index