Nuprl Lemma : pvar_wf

[name:Atom]. (pvar(name) ∈ formula())


Proof




Definitions occuring in Statement :  pvar: pvar(name) formula: formula() uall: [x:A]. B[x] member: t ∈ T atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T formula: formula() pvar: pvar(name) eq_atom: =a y ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q formulaco_size: formulaco_size(p) formula_size: formula_size(p) has-value: (a)↓ nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  formulaco-ext ifthenelse_wf eq_atom_wf formulaco_wf false_wf le_wf nat_wf has-value_wf_base set_subtype_base int_subtype_base is-exception_wf equal_wf has-value_wf-partial set-value-type int-value-type formulaco_size_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_set_memberEquality introduction extract_by_obid hypothesis sqequalRule dependent_pairEquality tokenEquality hypothesisEquality thin instantiate sqequalHypSubstitution isectElimination universeEquality atomEquality productEquality voidEquality applyEquality productElimination natural_numberEquality independent_pairFormation lambdaFormation divergentSqle sqleReflexivity intEquality lambdaEquality independent_isectElimination because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[name:Atom].  (pvar(name)  \mmember{}  formula())



Date html generated: 2018_05_21-PM-08_48_03
Last ObjectModification: 2017_07_26-PM-06_11_02

Theory : general


Home Index