Nuprl Lemma : residue-mul_wf

[n:ℕ+]. ∀[a,i:ℤ].  (ai mod n) ∈ residue(n) supposing CoPrime(n,a) ∧ CoPrime(n,i)


Proof




Definitions occuring in Statement :  residue-mul: (ai mod n) residue: residue(n) coprime: CoPrime(a,b) nat_plus: + uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T int:
Definitions unfolded in proof :  residue: residue(n) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a residue-mul: (ai mod n) and: P ∧ Q int_seg: {i..j-} subtype_rel: A ⊆B lelt: i ≤ j < k nat_plus: + prop: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Lemmas referenced :  modulus_wf_int_mod mod_bounds_1 mod_bounds lelt_wf coprime-mod coprime_wf and_wf nat_plus_wf coprime_prod
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin dependent_set_memberEquality lemma_by_obid isectElimination hypothesisEquality multiplyEquality hypothesis applyEquality because_Cache independent_pairFormation natural_numberEquality setElimination rename dependent_functionElimination independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a,i:\mBbbZ{}].    (ai  mod  n)  \mmember{}  residue(n)  supposing  CoPrime(n,a)  \mwedge{}  CoPrime(n,i)



Date html generated: 2016_05_15-PM-07_29_35
Last ObjectModification: 2015_12_27-AM-11_20_07

Theory : general


Home Index