Nuprl Lemma : residue-mul_wf
∀[n:ℕ+]. ∀[a,i:ℤ].  (ai mod n) ∈ residue(n) supposing CoPrime(n,a) ∧ CoPrime(n,i)
Proof
Definitions occuring in Statement : 
residue-mul: (ai mod n)
, 
residue: residue(n)
, 
coprime: CoPrime(a,b)
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
residue: residue(n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
residue-mul: (ai mod n)
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
modulus_wf_int_mod, 
mod_bounds_1, 
mod_bounds, 
lelt_wf, 
coprime-mod, 
coprime_wf, 
and_wf, 
nat_plus_wf, 
coprime_prod
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
multiplyEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_pairFormation, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
intEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a,i:\mBbbZ{}].    (ai  mod  n)  \mmember{}  residue(n)  supposing  CoPrime(n,a)  \mwedge{}  CoPrime(n,i)
Date html generated:
2016_05_15-PM-07_29_35
Last ObjectModification:
2015_12_27-AM-11_20_07
Theory : general
Home
Index