Nuprl Lemma : mod_bounds_1

[a:ℤ]. ∀[n:ℤ-o].  ((0 ≤ (a mod n)) ∧ mod n < |n|)


Proof




Definitions occuring in Statement :  modulus: mod n absval: |i| int_nzero: -o less_than: a < b uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B nat: prop: int_nzero: -o uimplies: supposing a modulus: mod n has-value: (a)↓ nequal: a ≠ b ∈  all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q gt: i > j
Lemmas referenced :  less_than'_wf modulus_wf nat_wf member-less_than absval_wf int_nzero_wf zero-le-nat value-type-has-value int-value-type equal_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot add_functionality_wrt_lt le_reflexive zero-add add-commutes le_wf absval_pos not-gt-2 iff_weakening_equal rem_bounds_z less_than_transitivity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality setElimination rename natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination isect_memberEquality voidElimination intEquality callbyvalueReduce remainderEquality lambdaFormation independent_functionElimination unionElimination equalityElimination lessCases sqequalAxiom voidEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality dependent_set_memberEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    ((0  \mleq{}  (a  mod  n))  \mwedge{}  a  mod  n  <  |n|)



Date html generated: 2018_05_21-PM-00_02_02
Last ObjectModification: 2018_05_19-AM-07_13_07

Theory : arithmetic


Home Index