Step
*
2
2
1
1
of Lemma
split-at-first-rel
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(R[x;y])
4. u : T
5. u1 : T
6. v : T List
7. X1 : T List
8. X2 : T List
9. [u1 / v] = (X1 @ X2) ∈ (T List)
10. ∀i:ℕ||X1|| - 1. R[X1[i];X1[i + 1]]
11. (¬False)
⇒ ((¬↑null(X1)) ∧ ¬R[last(X1);hd(X2)] supposing ||X2|| ≥ 1 )
12. R[u;u1]
13. [u; [u1 / v]] = [u / (X1 @ X2)] ∈ (T List)
14. i : ℕ(||X1|| + 1) - 1
⊢ R[[u / X1][i];[u / X1][i + 1]]
BY
{ CaseNat 0 `i' }
1
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(R[x;y])
4. u : T
5. u1 : T
6. v : T List
7. X1 : T List
8. X2 : T List
9. [u1 / v] = (X1 @ X2) ∈ (T List)
10. ∀i:ℕ||X1|| - 1. R[X1[i];X1[i + 1]]
11. (¬False)
⇒ ((¬↑null(X1)) ∧ ¬R[last(X1);hd(X2)] supposing ||X2|| ≥ 1 )
12. R[u;u1]
13. [u; [u1 / v]] = [u / (X1 @ X2)] ∈ (T List)
14. i : ℕ(||X1|| + 1) - 1
15. i = 0 ∈ ℤ
⊢ R[[u / X1][0];[u / X1][0 + 1]]
2
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(R[x;y])
4. u : T
5. u1 : T
6. v : T List
7. X1 : T List
8. X2 : T List
9. [u1 / v] = (X1 @ X2) ∈ (T List)
10. ∀i:ℕ||X1|| - 1. R[X1[i];X1[i + 1]]
11. (¬False)
⇒ ((¬↑null(X1)) ∧ ¬R[last(X1);hd(X2)] supposing ||X2|| ≥ 1 )
12. R[u;u1]
13. [u; [u1 / v]] = [u / (X1 @ X2)] ∈ (T List)
14. i : ℕ(||X1|| + 1) - 1
15. ¬(i = 0 ∈ ℤ)
⊢ R[[u / X1][i];[u / X1][i + 1]]
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y:T. Dec(R[x;y])
4. u : T
5. u1 : T
6. v : T List
7. X1 : T List
8. X2 : T List
9. [u1 / v] = (X1 @ X2)
10. \mforall{}i:\mBbbN{}||X1|| - 1. R[X1[i];X1[i + 1]]
11. (\mneg{}False) {}\mRightarrow{} ((\mneg{}\muparrow{}null(X1)) \mwedge{} \mneg{}R[last(X1);hd(X2)] supposing ||X2|| \mgeq{} 1 )
12. R[u;u1]
13. [u; [u1 / v]] = [u / (X1 @ X2)]
14. i : \mBbbN{}(||X1|| + 1) - 1
\mvdash{} R[[u / X1][i];[u / X1][i + 1]]
By
Latex:
CaseNat 0 `i'
Home
Index