Step
*
1
1
of Lemma
surjection-cantor-finite-branching
1. b : ℕ ⟶ ℕ+
2. f : n:ℕ ⟶ ℕb n
3. x : ℕ
4. k : ℕ
5. Σ(b j | j < x) = k ∈ ℕ
⊢ mu(λi.((b x) - 2 <z i ∨bfb-to-cantor(b;f;k + i))) = (f x) ∈ ℕb x
BY
{ xxx((InstLemma `mu-bound-unique` [⌜(f x) + 1⌝;⌜λi.((b x) - 2 <z i ∨bfb-to-cantor(b;f;k + i))⌝;⌜f x⌝]⋅
THENM (HypSubst' (-1) 0 THEN Auto)
)
THENA Auto
)xxx }
1
1. b : ℕ ⟶ ℕ+
2. f : n:ℕ ⟶ ℕb n
3. x : ℕ
4. k : ℕ
5. Σ(b j | j < x) = k ∈ ℕ
⊢ (b x) - 2 < f x ∨ (↑fb-to-cantor(b;f;k + (f x)))
2
1. b : ℕ ⟶ ℕ+
2. f : n:ℕ ⟶ ℕb n
3. x : ℕ
4. k : ℕ
5. Σ(b j | j < x) = k ∈ ℕ
6. ↑((λi.((b x) - 2 <z i ∨bfb-to-cantor(b;f;k + i))) (f x))
7. y : ℕ(f x) + 1
8. ↑((λi.((b x) - 2 <z i ∨bfb-to-cantor(b;f;k + i))) y)
⊢ y = (f x) ∈ ℤ
Latex:
Latex:
1. b : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
2. f : n:\mBbbN{} {}\mrightarrow{} \mBbbN{}b n
3. x : \mBbbN{}
4. k : \mBbbN{}
5. \mSigma{}(b j | j < x) = k
\mvdash{} mu(\mlambda{}i.((b x) - 2 <z i \mvee{}\msubb{}fb-to-cantor(b;f;k + i))) = (f x)
By
Latex:
xxx((InstLemma `mu-bound-unique` [\mkleeneopen{}(f x) + 1\mkleeneclose{};\mkleeneopen{}\mlambda{}i.((b x) - 2 <z i \mvee{}\msubb{}fb-to-cantor(b;f;k + i))\mkleeneclose{};\mkleeneopen{}f x\mkleeneclose{}]
\mcdot{}
THENM (HypSubst' (-1) 0 THEN Auto)
)
THENA Auto
)xxx
Home
Index