Nuprl Lemma : surjection-cantor-finite-branching

b:ℕ ⟶ ℕ+. ∃F:(ℕ ⟶ 𝔹) ⟶ n:ℕ ⟶ ℕn. Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕn;F)


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) int_seg: {i..j-} nat_plus: + nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] surject: Surj(A;B;f) prop: subtype_rel: A ⊆B cantor-to-fb: cantor-to-fb(b;g;n) nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q nat_plus: + not: ¬A implies:  Q false: False satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top has-value: (a)↓ le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) less_than: a < b squash: T fb-to-cantor: fb-to-cantor(b;f;n) rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: btrue: tt true: True bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  cantor-to-fb_wf nat_wf bool_wf fb-to-cantor_wf equal_wf int_seg_wf surject_wf nat_plus_wf sum_wf non_neg_sum le_weakening2 int_seg_properties nat_properties decidable__lt le_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf value-type-has-value set-value-type int-value-type subtract_wf mu-bound-unique add_nat_wf int_seg_subtype_nat false_wf decidable__le add-is-int-iff intformle_wf itermAdd_wf intformeq_wf int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_eq_lemma bor_wf lt_int_wf lelt_wf iff_transitivity assert_wf or_wf less_than_wf iff_weakening_uiff assert_of_bor assert_of_lt_int subtype_base_sq int_subtype_base mu-unique itermSubtract_wf int_term_value_subtract_lemma sum-unroll eqtt_to_assert top_wf add-subtract-cancel decidable__equal_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot not_wf sum_split set_subtype_base assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionExtensionality applyEquality hypothesisEquality hypothesis because_Cache functionEquality rename sqequalRule natural_numberEquality dependent_set_memberEquality setElimination independent_isectElimination dependent_functionElimination productElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination voidElimination int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll callbyvalueReduce addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed orFunctionality instantiate cumulativity inlFormation imageElimination inrFormation equalityElimination lessCases isect_memberFormation sqequalAxiom imageMemberEquality addLevel impliesFunctionality

Latex:
\mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}b  n.  Surj(\mBbbN{}  {}\mrightarrow{}  \mBbbB{};n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}b  n;F)



Date html generated: 2018_05_21-PM-07_58_21
Last ObjectModification: 2017_07_26-PM-05_35_40

Theory : general


Home Index