Nuprl Lemma : fb-to-cantor_wf

[b:ℕ ⟶ ℕ+]. ∀[f:n:ℕ ⟶ ℕn]. ∀[k:ℕ].  (fb-to-cantor(b;f;k) ∈ 𝔹)


Proof




Definitions occuring in Statement :  fb-to-cantor: fb-to-cantor(b;f;n) int_seg: {i..j-} nat_plus: + nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] fb-to-cantor: fb-to-cantor(b;f;n) member: t ∈ T nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] exists: x:A. B[x] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) has-value: (a)↓ int_seg: {i..j-} nat_plus: + guard: {T} lelt: i ≤ j < k sq_type: SQType(T) subtract: m sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x])
Lemmas referenced :  mu_wf lt_int_wf sum_wf int_seg_subtype_nat false_wf int_seg_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf assert_of_lt_int sum_lower_bound assert_wf nat_wf value-type-has-value set-value-type int-value-type subtract_wf eq_int_wf equal_wf nat_plus_wf int_seg_properties nat_plus_properties intformless_wf int_formula_prop_less_lemma decidable__lt itermMultiply_wf int_term_value_mul_lemma less_than_functionality le_weakening decidable__equal_int subtype_base_sq int_subtype_base itermSubtract_wf intformeq_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma mu-property set_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality setElimination rename because_Cache hypothesis hypothesisEquality sqequalRule applyEquality functionExtensionality natural_numberEquality independent_isectElimination independent_pairFormation lambdaFormation dependent_pairFormation dependent_set_memberEquality addEquality dependent_functionElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll productElimination callbyvalueReduce equalityTransitivity equalitySymmetry independent_functionElimination functionEquality multiplyEquality applyLambdaEquality instantiate cumulativity

Latex:
\mforall{}[b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}].  \mforall{}[f:n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}b  n].  \mforall{}[k:\mBbbN{}].    (fb-to-cantor(b;f;k)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-07_58_02
Last ObjectModification: 2017_07_26-PM-05_35_30

Theory : general


Home Index