Nuprl Lemma : fb-to-cantor_wf
∀[b:ℕ ⟶ ℕ+]. ∀[f:n:ℕ ⟶ ℕb n]. ∀[k:ℕ].  (fb-to-cantor(b;f;k) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
fb-to-cantor: fb-to-cantor(b;f;n)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
fb-to-cantor: fb-to-cantor(b;f;n)
, 
member: t ∈ T
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
has-value: (a)↓
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
sum: Σ(f[x] | x < k)
, 
sum_aux: sum_aux(k;v;i;x.f[x])
Lemmas referenced : 
mu_wf, 
lt_int_wf, 
sum_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
assert_of_lt_int, 
sum_lower_bound, 
assert_wf, 
nat_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
subtract_wf, 
eq_int_wf, 
equal_wf, 
nat_plus_wf, 
int_seg_properties, 
nat_plus_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
decidable__lt, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
less_than_functionality, 
le_weakening, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
mu-property, 
set_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
callbyvalueReduce, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality, 
multiplyEquality, 
applyLambdaEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}].  \mforall{}[f:n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}b  n].  \mforall{}[k:\mBbbN{}].    (fb-to-cantor(b;f;k)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_21-PM-07_58_02
Last ObjectModification:
2017_07_26-PM-05_35_30
Theory : general
Home
Index