Step
*
1
2
of Lemma
wellfounded-minimal
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [P] : T ⟶ ℙ
4. ∀x,y:T. Dec(R x y)
5. ∀x:T. Dec(P x)
6. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
7. ∀[P:T ⟶ ℙ]. ((∀j:T. ((∀k:T. ((R k j)
⇒ P[k]))
⇒ P[j]))
⇒ {∀n:T. P[n]})
8. ∀y:T. Dec(∃x:T. ((R+ x y) ∧ P[x]))
9. z : T
10. ∀k:T. ((R k z)
⇒ (∃x:T. (((R^*) x k) ∧ (P x)))
⇒ (∃y:T. ((P y) ∧ ((R^*) y k) ∧ (∀x:T. ((R+ x y)
⇒ (¬(P x)))))))
11. ∃x:T. (((R^*) x z) ∧ (P x))
12. ¬(∃x:T. ((R+ x z) ∧ P[x]))
⊢ ∃y:T. ((P y) ∧ ((R^*) y z) ∧ (∀x:T. ((R+ x y)
⇒ (¬(P x)))))
BY
{ (InstConcl [⌜z⌝]⋅ THEN Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [P] : T ⟶ ℙ
4. ∀x,y:T. Dec(R x y)
5. ∀x:T. Dec(P x)
6. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
7. ∀[P:T ⟶ ℙ]. ((∀j:T. ((∀k:T. ((R k j)
⇒ P[k]))
⇒ P[j]))
⇒ {∀n:T. P[n]})
8. ∀y:T. Dec(∃x:T. ((R+ x y) ∧ P[x]))
9. z : T
10. ∀k:T. ((R k z)
⇒ (∃x:T. (((R^*) x k) ∧ (P x)))
⇒ (∃y:T. ((P y) ∧ ((R^*) y k) ∧ (∀x:T. ((R+ x y)
⇒ (¬(P x)))))))
11. ∃x:T. (((R^*) x z) ∧ (P x))
12. ¬(∃x:T. ((R+ x z) ∧ P[x]))
⊢ P z
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [P] : T ⟶ ℙ
4. ∀x,y:T. Dec(R x y)
5. ∀x:T. Dec(P x)
6. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
7. ∀[P:T ⟶ ℙ]. ((∀j:T. ((∀k:T. ((R k j)
⇒ P[k]))
⇒ P[j]))
⇒ {∀n:T. P[n]})
8. ∀y:T. Dec(∃x:T. ((R+ x y) ∧ P[x]))
9. z : T
10. ∀k:T. ((R k z)
⇒ (∃x:T. (((R^*) x k) ∧ (P x)))
⇒ (∃y:T. ((P y) ∧ ((R^*) y k) ∧ (∀x:T. ((R+ x y)
⇒ (¬(P x)))))))
11. ∃x:T. (((R^*) x z) ∧ (P x))
12. ¬(∃x:T. ((R+ x z) ∧ P[x]))
13. P z
⊢ (R^*) z z
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. [P] : T {}\mrightarrow{} \mBbbP{}
4. \mforall{}x,y:T. Dec(R x y)
5. \mforall{}x:T. Dec(P x)
6. \mforall{}y:T. \mexists{}L:T List. \mforall{}x:T. ((R x y) {}\mRightarrow{} (x \mmember{} L))
7. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. ((\mforall{}j:T. ((\mforall{}k:T. ((R k j) {}\mRightarrow{} P[k])) {}\mRightarrow{} P[j])) {}\mRightarrow{} \{\mforall{}n:T. P[n]\})
8. \mforall{}y:T. Dec(\mexists{}x:T. ((R\msupplus{} x y) \mwedge{} P[x]))
9. z : T
10. \mforall{}k:T
((R k z)
{}\mRightarrow{} (\mexists{}x:T. ((rel\_star(T; R) x k) \mwedge{} (P x)))
{}\mRightarrow{} (\mexists{}y:T. ((P y) \mwedge{} (rel\_star(T; R) y k) \mwedge{} (\mforall{}x:T. ((R\msupplus{} x y) {}\mRightarrow{} (\mneg{}(P x)))))))
11. \mexists{}x:T. ((rel\_star(T; R) x z) \mwedge{} (P x))
12. \mneg{}(\mexists{}x:T. ((R\msupplus{} x z) \mwedge{} P[x]))
\mvdash{} \mexists{}y:T. ((P y) \mwedge{} (rel\_star(T; R) y z) \mwedge{} (\mforall{}x:T. ((R\msupplus{} x y) {}\mRightarrow{} (\mneg{}(P x)))))
By
Latex:
(InstConcl [\mkleeneopen{}z\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index