Nuprl Lemma : assert-lattice-bless
∀[l:LatticeStructure]. ∀[eq:EqDecider(Point(l))]. ∀[a,b:Point(l)].  uiff(↑lattice-bless(l;eq;a;b);a < b)
Proof
Definitions occuring in Statement : 
lattice-bless: lattice-bless(l;eq;a;b), 
lattice-less: a < b, 
lattice-point: Point(l), 
lattice-structure: LatticeStructure, 
deq: EqDecider(T), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
lattice-less: a < b, 
lattice-bless: lattice-bless(l;eq;a;b), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
deq: EqDecider(T), 
eqof: eqof(d), 
bnot: ¬bb, 
assert: ↑b, 
bfalse: ff, 
false: False, 
lattice-le: a ≤ b, 
not: ¬A, 
prop: ℙ, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
true: True
Lemmas referenced : 
lattice-ble_wf, 
bool_wf, 
eqtt_to_assert, 
assert-lattice-ble, 
safe-assert-deq, 
false_wf, 
lattice-le_wf, 
not_wf, 
equal_wf, 
lattice-point_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
true_wf, 
assert_wf, 
lattice-bless_wf, 
lattice-less_wf, 
deq_wf, 
lattice-structure_wf, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
independent_pairFormation, 
isect_memberFormation, 
voidElimination, 
independent_pairEquality, 
axiomEquality, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
natural_numberEquality, 
isect_memberEquality
Latex:
\mforall{}[l:LatticeStructure].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[a,b:Point(l)].
    uiff(\muparrow{}lattice-bless(l;eq;a;b);a  <  b)
Date html generated:
2020_05_20-AM-08_43_19
Last ObjectModification:
2017_07_28-AM-09_13_47
Theory : lattices
Home
Index