Nuprl Lemma : list_all_iff
∀[T:Type]. ∀l:T List. ∀[P:T ⟶ ℙ]. (list_all(x.P[x];l) 
⇐⇒ ∀x:T. ((x ∈ l) 
⇒ P[x]))
Proof
Definitions occuring in Statement : 
list_all: list_all(x.P[x];l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
list_all: list_all(x.P[x];l)
, 
top: Top
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
true: True
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
list_induction, 
uall_wf, 
iff_wf, 
list_all_wf, 
all_wf, 
l_member_wf, 
list_wf, 
reduce_nil_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
true_wf, 
reduce_cons_lemma, 
cons_member, 
and_wf, 
equal_wf, 
cons_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
functionIsType, 
universeIsType, 
rename, 
productElimination, 
unionElimination, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
productEquality, 
inlFormation, 
inrFormation, 
inhabitedIsType
Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  (list\_all(x.P[x];l)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  ((x  \mmember{}  l)  {}\mRightarrow{}  P[x]))
Date html generated:
2019_10_15-AM-10_54_00
Last ObjectModification:
2018_09_27-AM-10_02_43
Theory : list!
Home
Index