Nuprl Lemma : list_all_iff

[T:Type]. ∀l:T List. ∀[P:T ⟶ ℙ]. (list_all(x.P[x];l) ⇐⇒ ∀x:T. ((x ∈ l)  P[x]))


Proof




Definitions occuring in Statement :  list_all: list_all(x.P[x];l) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q list_all: list_all(x.P[x];l) top: Top uimplies: supposing a not: ¬A false: False true: True or: P ∨ Q subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  list_induction uall_wf iff_wf list_all_wf all_wf l_member_wf list_wf reduce_nil_lemma null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse true_wf reduce_cons_lemma cons_member and_wf equal_wf cons_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality universeEquality applyEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation because_Cache independent_isectElimination equalityTransitivity equalitySymmetry natural_numberEquality functionIsType universeIsType rename productElimination unionElimination hyp_replacement dependent_set_memberEquality applyLambdaEquality setElimination productEquality inlFormation inrFormation inhabitedIsType

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  (list\_all(x.P[x];l)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  ((x  \mmember{}  l)  {}\mRightarrow{}  P[x]))



Date html generated: 2019_10_15-AM-10_54_00
Last ObjectModification: 2018_09_27-AM-10_02_43

Theory : list!


Home Index