Nuprl Lemma : allowed_wf
∀[T:𝕌']. ∀[x:Provisional(T)].  (allowed(x) ∈ ℙ)
Proof
Definitions occuring in Statement : 
allowed: allowed(x), 
provisional-type: Provisional(T), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
provisional-type: Provisional(T), 
prop: ℙ, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
allowed: allowed(x), 
iff: P ⇐⇒ Q, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
pi1: fst(t), 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
squash: ↓T, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
squash_wf, 
uimplies_subtype, 
subtype-respects-equality, 
provisional-type_wf, 
istype-universe, 
usquash-equality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
universeEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
thin, 
productElimination, 
productIsType, 
equalityIstype, 
universeIsType, 
isectIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
sqequalBase, 
equalitySymmetry, 
functionIsType, 
equalityTransitivity, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
applyEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
imageElimination, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
lambdaEquality_alt, 
isectEquality, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x:Provisional(T)].    (allowed(x)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-08_00_51
Last ObjectModification:
2020_05_17-PM-07_17_30
Theory : monads
Home
Index